Nonlinear Tensile and Shear Behavior of Macro Fiber Composite Actuators

R. Brett Williams¹, Marc R. Schultz, Michael W. Hyer, Daniel J. Inman and W. Keats Wilkie

¹ Corresponding Author
Graduate Research Assistant,
Department of Mechanical Engineering
Virginia Tech
310 Durham Hall MC 0261
Blacksburg, VA 24061 rowilli6@vt.edu

ABSTRACT

The Macro Fiber Composite actuator, developed at the NASA Langley Research Center, offers much higher flexibility and induced strain levels than its monolithic piezoceramic predecessors. This increased performance results from a laminated, piezoceramic fiber-reinforced construction and an interdigitated electrode pattern. Since the Macro Fiber Composite is capable of such high actuation strain levels, (~2000 µε, peak-to-peak), a significant amount of nonlinear mechanical behavior occurs. As a result, the mechanical properties are not constant over the entire applicable strain range of the device, and such changes should be accounted for in structural actuation models. The current work presents the results of MFC tensile tests designed to measure, under short circuit boundary conditions, both the four independent linear elastic engineering constants, valid at most strain levels, as well as nonlinear stress-strain behavior. In addition to experimental results, various plastic deformation models are developed to represent this constitutive behavior at higher strain levels.

Keywords: piezoceramic fibers, elastic properties, material nonlinearities

INTRODUCTION

The Macro Fiber Composite (MFC) actuator is part of an emerging technology that strives to improve the current state of the art for structural actuation, which currently relies heavily upon monolithic piezoceramic materials. The MFC is a layered, planar actuation device that employs rectangular cross-section, unidirectional piezoceramic fibers (PZT) embedded in a thermosetting polymer matrix. This active, fiber-reinforced layer is then sandwiched between copper-clad Kapton® film layers that have an etched interdigitated electrode pattern. During manufacturing, these layers are laid-up by hand and then cured in a vacuum hot-press. After the epoxy matrix that bonds the package together is fully cured, a high DC voltage (~1500 Volts) is applied to the electrodes, thereby poling the piezoceramic material in the plane of the actuator and establishing the poling direction parallel to the PZT fibers. This in-plane poling and subsequent in-plane voltage actuation allows the MFC to utilize the d_{33} piezoelectric effect, which is much stronger than the d_{31} effect used by traditional PZT actuators with through-the-thickness poling [1]. A detailed description of the MFC manufacturing process is given by Williams et al. [2] and, while the current work focuses on room-temperature properties only, predicted elastic behavior over a wide range of temperatures is presented in Williams, Inman and Wilkie [3].

Since the MFC is composed of both isotropic and orthotropic layers, it is most adequately represented as a symmetric, hybrid, cross-ply laminate, or $[\text{Iso Kaptan/ISO acrylic/90° copper/}\tilde{0}_{\text{PZT}}]_S$. Using
standard 1-2 notation for the principal material coordinate system [4], the overall mechanical behavior of this orthotropic laminate is fully described by four independent stiffness quantities, E_1, E_2, ν_{12} and G_{12}, where ν_{12} is the major Poisson’s ratio. In a previous work, micromechanical models were used to determine the elastic constants of each orthotropic layer, and then classical lamination theory was used to determine the effective mechanical properties of the MFC under short-circuit boundary conditions [2]. The present effort serves to verify these linear values experimentally, and then to further characterize plastic deformation behavior.

EXPERIMENTAL PROCEDURE

In order to characterize their tensile and shear constitutive behavior and mechanical properties, three sets of tensile test experiments were performed on MFC actuators. The first set was designed to measure the stress-strain behavior in the PZT fiber direction, while the second set captured such behavior transverse to these fibers. The third set measured the in-plane shear stress-shear strain performance. This section describes the specific preparation of the various types of specimens, strain gage instrumentation, and Instron testing machine set-up.

Specimen Preparation

The first set of tests loaded the standard MFC tensile test specimen, seen in Figure 1, in the direction of the PZT fibers (1-direction). The tabs near the ends of the specimen were for loading by way of pneumatic grips, and a fine mesh screen was inserted between the specimen and the grips to prevent slipping during the test. The second set of tests loaded the MFC perpendicular to the PZT fibers using 2-direction test specimens, which were cut as depicted in Figure 1 and fitted with specially designed fiberglass tabs as seen in Figure 2a. This particular region was selected because it contained only an active portion of the MFC (area containing copper electrodes), along with the solder tabs and leads which preserved the electrical connectivity of the device. Clearly, the 2-direction test specimen was much shorter than those used for the 1-direction tests, and having enough area to fit into the grips while uniformly distributing the clamping pressure was an issue that was resolved by bonding fiberglass tabs onto the specimen using strain gage epoxy. Fiberglass was chosen as its stiffness closely resembled the stiffness of the MFC in the 2-direction, however, the increased thickness of the specimen due to the tabs required the use of mechanical instead of pneumatic grips. The slots seen in Figure 2a were cut in order to allow the MFC leads to escape from the grips and be twisted together without damage so that the desired short-circuit properties were measured. The third set of tests utilized 45° off-axis tensile test specimens, where θ is the PZT fiber orientation angle seen in Figure 2b, to measure the in-plane shear stress-shear strain behavior of the MFC. Again, the end tabs were used for loading into the grips; however, off-axis tensile specimens exhibit shear-extension coupling. Since traditional mechanical or pneumatic grips prohibited such shear deformation, special pivoting grips [5] that allowed the ends of the specimen to rotate freely were used to promote a uniform state of stress across the specimen width.

Strain Gage Instrumentation and Instron Testing Machine Setup

For the 1 and 2-direction tests, strain gages capable of measuring both longitudinal and transverse strains simultaneously, type CEA-13-250WQ-350 from Vishay Measurements Group, were aligned with the 1-2 coordinate system seen in Figure 1, and then bonded to the center of the top and bottom of each MFC tests specimen. For the off-axis tests, 0°-45°-90° strain gage rosettes, type CEA-13-250UR-350 from Vishay Measurements Group, were aligned with the x-y coordinate system, and bonded to the top and bottom of the specimens as shown in Figure 2b. All strain gages were bonded using M-Bond AE-15 strain gage epoxy, which was cured at 150°F for two hours as suggested by the manufacturer, and strain gage leads attached using solder. Each MFC specimen was then tensile
tested using an Instron 4468 universal testing machine with a self-calibrating 1000 kN load cell and the appropriate grips. All specimens were loaded at a crosshead speed of 0.2 mm/min until failure occurred in the specimen or near the grips. During the tensile tests, a ten channel stand-alone strain conditioner-amplifier and an analog to digital converter were connected to a PC, on which a Labview Virtual Instrument was used to collect numerous sets of data simultaneously, namely load from the testing machine and four (or six, for off-axis test) channels of voltage from the four (or six) strain gages.

ELASTIC-PLASTIC DEFORMATION MODELS

Most engineering materials exhibit a simple, proportional relationship between stress and strain and between transverse and longitudinal strain at low levels of stress and strain. The elastic moduli and Poisson’s ratios are extracted from these linear relationships. However, at higher stress/strain levels, this linear relationship is no longer valid, as plastic deformation begins to occur. Since the MFC is capable of actuating at such high levels, it is important to characterize both its elastic and plastic behavior. This section focuses on experimentally characterizing such behavior using various plastic deformation models. Also, as part of this analysis, the experimental engineering properties are compared to the values obtained using classical lamination theory.
Comments on Data Analysis

For an engineering analysis, stress and strain values must be computed from the acquired load and voltage data. The actual strains are easily calculated from the recorded voltages, as the strain gage amplifier is calibrated such that one output volt equals 1000 microstrain (µε). The strain values are then averaged from the top and bottom gages to remove any bending strain effects. The stress developed from the applied load is calculated by dividing the load data by the cross-sectional area of the active region of the MFC. However, the chosen area represents the maximum value for the specimen, as the copper electrodes are spaced out, rather than covering the entire active region. Thus, the actual thickness can vary slightly, depending on the amount of epoxy that is expelled from between the electrodes during the final MFC curing phase. Nevertheless, a photomicrograph of the MFC cross-section indicates that using this maximum thickness is a reasonable approach [1]. Lastly, the stress-strain curves are shifted horizontally so that the linear region extrapolates exactly through the origin in accordance with ASTM Standard D3039/D3039M-00.

Tests in the 1 and 2-Directions

A quick examination of the stress-strain data from the 1 and 2-direction tests shows distinct elastic and plastic strain regions. Behavior of this type is commonly represented using two plastic deformation models, namely the elastic-linear hardening and Ramberg-Osgood relationships. Also, the use of biaxial strain gages for these tests allow transverse strain data to be collected, from which, Poisson’s ratios can be calculated. However, only the ν_{12} is considered independent and of particular importance to the current characterization of the MFC.

Elastic-Linear Hardening Relationship

The elastic-linear hardening relationship describes the stress-strain behavior as linear at a slope of E_i ($i = 1, 2$) up to the onset of plastic deformation, and then linear again at a slope of δ_iE_i through the plastic region, where δ_i is the slope reduction factor for the i-direction test [6]. For materials displaying hardening type plastic deformation, i.e., the MFC when tested in the 1 and 2-directions, δ_i has a value between zero and one. Mathematically, this type of constitutive behavior is given as

$$\sigma_i = \begin{cases} E_i \epsilon_i, & \sigma_i \leq \sigma_i^0 \\ (1-\delta_i)\sigma_i^0 + \delta_i E_i \epsilon_i, & \sigma_i \geq \sigma_i^0 \end{cases}$$

where σ_i is the normal stress, ϵ_i is the normal strain, and σ_i^0 is the stress at which plastic deformation begins. Application of this model to the data from the 1 and 2-direction tests requires a linear regression of both the elastic and plastic regions, which provides values for E_i and δ_iE_i for each specimen, respectively. The onset of yielding is determined graphically as the point where the stress-strain curve begins to exhibit plastic deformation, in contrast to an offset yield point typically used with engineering metals. These characteristic values are averaged from the four specimens for each of the two directions and appear in Table 1. Figure 3a shows a plot of Eq. 1 using these parameters, along with the experimental data. Clearly, the models adequately represent the experimental data from the 1 and 2-direction tests.

Ramberg-Osgood Relationship

The Ramberg-Osgood plastic deformation model represents the total strain as the sum of the elastic and plastic strains components [6]. Again, the elastic strain component is proportional to stress, however, the relationship between the plastic strain component and stress is exponential and given by
Figure 3 (a) Elastic, Linear-Hardening Model and Experimental Data and (b) Ramberg-Osgood Model and Experimental Data: 1 and 2-Direction Stress-Strain Relationships.

\[\sigma_i = H_i \varepsilon_P^{n_i} \] \hspace{1cm} (2)

where \(H_i \) is a material constant, \(n_i \) is a strain hardening exponent, and \(\varepsilon_P \) is the plastic strain component. Solving Eq. 2 for \(\varepsilon_P \) and adding to the elastic strain gives the total strain as

\[\varepsilon_i = \frac{\sigma_i}{E_i} + \left(\frac{\sigma_i}{H_i} \right)^{\frac{1}{n_i}} \] \hspace{1cm} (3)

From the exponential nature of Eq. 2, a plot of stress versus plastic strain is a straight line on a log-log plot. Values of \(H_i \) and \(n_i \) for a particular tensile test are found either graphically from this plot (where \(H_i \) is equal to \(\sigma_i \) at a \(\varepsilon_P \) equal to one, and \(n_i \) is the slope of the line if the logarithmic decades in the two directions are of equal lengths) or using a linear regression analysis of logarithmic data. The current effort uses the more precise latter approach to find \(H_i \) and \(n_i \) for each of the experimental stress-strain relationships. The averaged results for both the 1 and the 2-direction tests are presented in Table 1. Figure 3b plots Eq. 3 with these values, one curve for each direction, along with the corresponding experimental data. Again, the curves closely match the data.

Nonlinear Behavior of the Major Poisson’s Ratio, \(\nu_{12} \)

The experimental transverse strain data is used to determine Poisson’s ratio, \(\nu_{12} \). As seen in Figure 4a, the slope of the linear fit, \(\nu_{12} \), is constant in the linear elastic region; however, at the onset of

<table>
<thead>
<tr>
<th>Test Type</th>
<th>(E_i), GPa</th>
<th>(\delta_i), GPa</th>
<th>(E_{1s}), GPa</th>
<th>(\sigma_{ol}), GPa</th>
<th>(n_i)</th>
<th>(H_i), GPa</th>
<th>(\nu_{12})</th>
<th>Plastic</th>
<th>(\nu_{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Direction</td>
<td>29.4</td>
<td>3.53</td>
<td>0.120</td>
<td>0.035</td>
<td>0.0450</td>
<td>0.0545</td>
<td>0.312</td>
<td>-0.506</td>
<td>N/A</td>
</tr>
<tr>
<td>Test ((i = 1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Direction</td>
<td>15.2</td>
<td>1.95</td>
<td>0.129</td>
<td>0.028</td>
<td>0.172</td>
<td>0.102</td>
<td>N/A</td>
<td>N/A</td>
<td>0.161</td>
</tr>
</tbody>
</table>
plastic behavior, it changes sign and magnitude. These changes are indicative of broken fibers returning to a lower or stress-free state, at which time the transverse strain is recovered. Beyond this strain level, ν_{12} is essentially zero. Poisson’s ratio values for the elastic and plastic regions are given in Table 1. It should be noted that the tension tests from this research effort are monotonic, and fiber breakage is a one-time event. Thus, Poisson’s ratio could change for subsequent tensile loading and unloading scenarios, as would be the case for actuating the MFC under large harmonic voltage (above ~1250 volts peak to peak).

Comments on the Minor Poisson’s Ratio, ν_{21}

Since the minor Poisson’s ratio, ν_{21}, is not an independent material property, it is not essential to verify its value experimentally. However, if one wishes to do so, it is determined in the same manner as ν_{12}, except that data from the 2-direction test is substituted for the 1-direction data. In the current experiments, transverse strain data was collected for the 2-direction tests, however, since these test specimens are so short, the fiberglass tabs severely restrict the transverse contraction, thus resulting in experimental values of ν_{21} that are much too low. The results presented in Table 1 and 3 are from calculated from the reciprocity relationship

$$V_{21} = V_{12} \frac{E_2}{E_1}$$ \hspace{1cm} (4)

In Tables 1 and 3, the quantities on the right-hand side of Eq. (4) are from experimental and analytical values, respectively.

Off-Axis Tests

While the 1 and 2-direction tests create a uniaxial state of stress by applying the load at 0° or 90° to the PZT fibers, respectively, loading at any intermediate angle creates a biaxial stress-state consisting of longitudinal, transverse and in-plane shear stresses on the off-axis plane [7]. Since this set of tests is concerned with characterizing shear behavior, the load should be applied at an angle which maximizes the shear strain in the material coordinate system. While previous work shows this optimal angle is 32° for the MFC [7], special tensile-test coupons were manufactured with the PZT fibers oriented at 45° because such components are readily available from NASA Langley. However,
this deviation in angle results in only a 5% reduction in shear strain [8] and simplifies the subsequent data analysis.

In order to obtain a shear stress-shear strain curve, the collected stress-strain data from an off-axis specimen must be manipulated in the following manner. First, stress transformations give the shear stress in the material coordinates as

\[
\tau_{12} = \frac{\sigma_x \sin 2\theta}{2}
\] (5)

where \(\sigma_x\) is the applied unidirectional stress and \(\theta\) is the PZT orientation angle defined in Figure 2b. Next, the shear strain in the material coordinate system is

\[
\gamma_{12} = (\varepsilon_y - \varepsilon_x)\sin 2\theta + \gamma_{xy} \cos 2\theta.
\] (6)

Here, for 0°-45°-90° rosettes, \(\varepsilon_x\) and \(\varepsilon_y\) are equal to the strains from gages 1 and 3 (\(\varepsilon_{g1}\) and \(\varepsilon_{g3}\)), respectively, while the shear strain in the global geometric coordinates, \(\gamma_{xy}\), is

\[
\gamma_{xy} = -\varepsilon_{g1} + 2\varepsilon_{g2} - \varepsilon_{g3}.
\] (7)

However, since \(\theta = 45°\) for these MFC coupons, Eq. 5 simplifies to

\[
\tau_{12} = \frac{\sigma_x}{2}
\] (8)

and \(\gamma_{xy}\) is not required as the last term in Eq. 6 vanishes. Now, the desired relationship is found by plotting the shear stress from Eq. 8 versus the shear strain calculated in Eq. 6 at each load level. The in-plane shear modulus, \(G_{12}\), is the slope of the initial tangent to this curve.

Ramberg-Osgood Relationship

The Ramberg-Osgood model developed above easily adapts for use with nonlinear in-plane shear deformation by substituting shear stress and strain parameters for their normal stress and strain counterparts. The resulting expression for the intralaminar shear stress, \(\tau_{12}\), is

\[
\tau_{12} = H_{12} \gamma_{p12}^{n_{12}}
\] (9)

where \(H_{12}\) is a material constant, \(n_{12}\) is a strain hardening exponent, and \(\gamma_{p12}\) is the plastic component of shear strain. Solving Eq. 9 for \(\gamma_{p12}\) and adding it to the elastic strain component gives the total strain as

\[
\gamma_{12} = \frac{\tau_{12}}{G_{12}} + \left(\frac{\tau_{12}}{H_{12}}\right)^{\frac{1}{n_{12}}}
\] (10)

Following the regression analysis described above, average values for \(H_{12}\) and \(n_{12}\) are found from five test specimens and the corresponding shear stress-shear strain relationship from Eq. 10 is plotted along with the experimental data in Figure 4b.
Clearly, the Ramberg-Osgood model accurately represents the shear stress-shear strain data. However, it is preferable to have two expressions for all stress-strain curves, at least one of which can be solved explicitly for stress. Examination of the data shows only a small amount of plastic strain, so a power hardening type of relationship will not fit the data well. However, the shear stress-shear strain data does appear to possess a quadratic relationship of the form

\[\tau_{12} = C_1 \gamma_{12} + C_2 \gamma_{12}^2 \]

(11)

where the constants \(C_1 \) and \(C_2 \) are found using a quadratic regression procedure for each specimen. The average values from five tests are presented in Table 2 and are used to plot Eq. 11 along with the experimental data in Figure 4b.

Unlike the elastic-linear hardening and Ramberg-Osgood models, this quadratic regression is purely mathematical and not based on any physical behavior. However, Eq. 11 provides a good fit to the data and gives a simple shear stress prediction that can be readily applied for dynamic simulation and control models.

Comparison with Theoretical Linear Values

In a previous work [2], classical lamination theory was used to predict effective laminate stiffness properties of the MFC. These values are presented in Table 3, along with the percent error when compared to the experimental values obtained from the current effort. Clearly, the traditional mechanics of composite materials theories predict, with reasonable accuracy, the four independent engineering properties in the linear elastic region. This experimental verification of these well-known equations is significant because future researchers can employ such techniques for alternative MFC lamination configurations, including various PZT fiber orientations and geometries.

CONCLUSIONS

This research effort experimentally determines the four independent orthotropic engineering properties in the linear elastic region as well as characterizes the nonlinear constitutive behavior of the MFC actuator under short-circuit conditions. The experimental values of \(E_1, E_2, \nu_{12} \) and \(G_{12} \) agree with published values [2] to within a few percent in most cases. Therefore, a researcher can use traditional mechanics of laminated composites to develop new types of MFC actuators with various piezoelectric materials and geometries. Also, the models in Figure 3 depict high fidelity quantitative relationships for the nonlinear stress-strain behavior in the 1 and 2-directions, while the off-axis test specimens provide accurate representation of the in-plane shear behavior of the MFC, as shown in Figure 4b. However, these models all have both advantages and disadvantages. For the 1 and 2-direction tests, one could argue that the Ramberg-Osgood is a better fit overall, particularly in the elastic-plastic transition region, yet it involves increased complexity, the inability to explicitly solve for stress, and no distinct yield point. While in general, either model is acceptable for design use, one concerned with overall stress-strain behavior would likely prefer the simpler elastic-linear hardening model, but if a failure and durability study of the MFC is performed, the Ramberg-Osgood model would be preferable.

| Table 2 Ramberg-Osgood and Quadratic Regression Parameters for Shear Behavior |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| \(G_{12} \), GPa | \(n_{12} \) | \(H_{12} \), GPa | \(C_1 \), GPa | \(C_2 \), GPa |
| 6.06 | 0.289 | 0.138 | 6.20 | -384 |
Table 3 Predicted Orthotropic Elastic Constants From Classical Lamination Theory

<table>
<thead>
<tr>
<th>Test Type</th>
<th>E_1, GPa</th>
<th>$E_1%$ Error</th>
<th>v_{12}, %</th>
<th>$v_{12}%$ Error</th>
<th>v_{21}, %</th>
<th>$v_{21}%$ Error</th>
<th>G_{12}, GPa</th>
<th>$G_{12}%$ Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Direction Test ($i = 1$)</td>
<td>31.13</td>
<td>5.9%</td>
<td>0.254</td>
<td>-18.5%</td>
<td>N/A</td>
<td>N/A</td>
<td>7.00</td>
<td>15.5%</td>
</tr>
<tr>
<td>2-Direction Test ($i = 2$)</td>
<td>18.55</td>
<td>22.3%</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1514</td>
<td>-5.84%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

due to its fidelity in the critical yielding region. As for the shear stress-shear strain behavior, both the Ramberg-Osgood model and the quadratic regression fit the data extremely well. While the former approach has the aforementioned drawbacks, it is derived from observed mechanical behavior, while the latter is simply a mathematical formula with no physical basis. Also, the fit lines in Figure 4a, the slopes of which represent the major Poisson’s ratio, represent the data well over the entire applicable strain range. Overall, this project gives researchers in the field of intelligent structures an in-depth view of the short-circuit mechanical behavior of the MFC actuator, including both values for essential elastic engineering constants as well as equations designed to handle even complex plastic deformation.

ACKNOWLEDGEMENTS

The financial and technological support of the following organizations is gratefully acknowledged:
- Air Force Office of Scientific Research (AFOSR), grant number F49620-99-1-0231
- NASA Langley Research Center, grant number NASA LaRC 01-1103
- NASA Graduate Student Researchers Program (GSRP), grant number NGT-1-02014
- NASA Virginia Space Grant Consortium

REFERENCES